The Meridional Isomer of (Diethylenetriamine)trinitrocobalt(III), mer-[Co(dien)($\left.\left.\mathbf{N O}_{2}\right)_{3}\right]$

By Melvyn Rowen Churchill, Gordon M. Harris, Tomoaki Inoue and Romana A. Lashewycz
Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214, USA

(Received 8 July 1980; accepted 7 November 1980)

Abstract. $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\left(\mathrm{NO}_{2}\right)_{3}\right]$, orthorhombic, Pbca , $Z=8, a=12.710(2), b=13.199(2), c=$ 13.024 (2) $\AA, V=2184.8$ (7) $\AA^{3}, D_{c}=1.824 \mathrm{Mg} \mathrm{m}^{-3}$, $M_{r}=300.12, \mu(\mathrm{Mo} K \alpha)=1.595 \mathrm{~mm}^{-1}$. Final $R_{1}=$ 3.4% for 1320 reflections with $F_{o}>\sigma\left(F_{o}\right)$. The $\mathrm{Co}^{\text {III }}$ ion has a slightly distorted octahedral coordination geometry; the dien ligand occupies meridional sites, with $\mathrm{Co}-\mathrm{N}(4)=1.948(3), \mathrm{Co}-\mathrm{N}(5)=1.950$ (3), and $\mathrm{Co}-\mathrm{N}(6)=1.946$ (4) \AA; the $\mathrm{Co}-\mathrm{NO}_{2}$ linkages range from 1.916 (3) to 1.997 (3) \AA in length.

Introduction. The title compound was studied as part of a program to identify isomers of (dien) $\mathrm{Co}^{\mathrm{III}}$ complexes [dien $=$ diethylenetriamine (I)]. The complex was synthesized via the method of Crayton \& Mattern (1960) and slowly crystallized as orange-red brickshaped crystals from aqueous solution (20 d at room temperature).

Cell dimensions and intensities were measured at 297 K with a Syntex $P 22_{1}$ diffractometer (Churchill, Lashewycz \& Rotella, 1977) using Mo Ka radiation ($\bar{\lambda}=$ $0.71073 \AA$) and a crystal of size $0.25 \times 0.30 \times 0.35$ mm . The systematic absences $0 k l$ for $k=2 n+1, h 0 l$ for $l=2 n+1$ and $h k 0$ for $h=2 n+1$ indicated the space group Pbca. Data with $2 \theta=3-45^{\circ}$ for $+h,+k$, $\pm l$ (2798 total) were corrected for Lorentz, polarization and absorption effects; equivalent pairs of data were averaged ($R_{\mathrm{Av}}=2 \cdot 1 \%$), yielding 1437 independent data. The structure was solved using Patterson and difference-Fourier techniques and refined via fullmatrix least squares to $R_{1}=3.4 \%$ and $R_{2}=3.3 \%$ for 1320 reflections with $F_{o}>\sigma\left(F_{o}\right)\left(R_{1}=4 \cdot 1 \%, R_{2}=\right.$ 3.3% for all 1437 data). The largest peak on a final difference-Fourier synthesis (height $0.56 \mathrm{e} \AA^{-3}$) was close to the position of the Co atom; the structure is thus complete. All calculations were performed on a Nova 1200 minicomputer using a locally modified version of the Syntex $X T L$ program package. Analytical scattering factors for neutral atoms from International Tables for X-ray Crystallography (1974)
were corrected for both f^{\prime} and $f^{\prime \prime}$ terms. The function minimized during least-squares refinement was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w=\left\{\mid \sigma\left(F_{o}\right)\right\}^{2}+$ $\left.\left(0.01 F_{o}\right)^{2}\right\}^{-1}$.

The F_{o} values were corrected for secondary extinction using the formula $F_{o, \text { cor. }}=F_{o, \text { uncor. }}\left(1 \cdot 0+k I_{o}\right)$; the resulting value for k was 6.6×10^{-8}.

Atomic coordinates are given in Table 1.*

[^0]Table 1. Positional parameters for $\left\lfloor\mathrm{Co}(\right.$ dien $\left.)\left(\mathrm{NO}_{2}\right)_{3}\right\rfloor$

	x	y	z	$B\left(\AA^{2}\right)$
Co	$0 \cdot 10851$ (3)	$0 \cdot 18733$ (3)	$0 \cdot 10319$ (3)	1.89*
$\mathrm{N}(1)$	0.2163 (2)	0.2480 (2)	$0 \cdot 1963$ (2)	2.8
N (2)	0.0002 (2)	$0 \cdot 1387$ (2)	0.0112 (2)	3.0
$\mathrm{N}(3)$	0.0698 (2)	$0 \cdot 3210$ (2)	0.0600 (3)	3.4
N(4)	$0 \cdot 2180$ (3)	$0 \cdot 1720$ (2)	-0.0003 (2)	2.7
N (5)	$0 \cdot 1429$ (2)	0.0484 (2)	$0 \cdot 1415$ (2)	$2 \cdot 2$
N(6)	0.0112 (3)	$0 \cdot 1828$ (3)	$0 \cdot 2184$ (3)	$3 \cdot 6$
$\mathrm{O}(1 A)$	$0 \cdot 3060$ (2)	$0 \cdot 2514$ (2)	$0 \cdot 1735$ (3)	6.0
$\mathrm{O}(18)$	$0 \cdot 1855$ (3)	$0 \cdot 2912$ (3)	0.2711 (3)	9.0
$\mathrm{O}(2 A)$	0.0228 (2)	$0 \cdot 1012$ (2)	-0.0708 (2)	$5 \cdot 2$
$\mathrm{O}(2 B)$	-0.0926 (2)	0.1439 (2)	0.0357 (3)	5.9
$\mathrm{O}(3 A)$	$0 \cdot 1066$ (3)	0.3559 (2)	-0.0180 (3)	$5 \cdot 7$
$\mathrm{O}(3 \mathrm{~B})$	0.0100 (3)	0.3712 (2)	$0 \cdot 1099$ (3)	8.3
C(1)	0.2624 (4)	0.0676 (3)	$0 \cdot 0009$ (4)	$3 \cdot 5$
C(2)	0.2517 (3)	0.0256 (3)	$0 \cdot 1086$ (3)	$3 \cdot 1$
C(3)	0.1172 (3)	0.0333 (3)	0.2511 (3)	$3 \cdot 3$
C(4)	0.0097 (3)	0.0795 (3)	0.2653 (3)	3.6
H(41)	$0 \cdot 190$ (3)	$0 \cdot 183$ (3)	-0.062 (3)	4.5 (10)
H(42)	0.263 (3)	$0 \cdot 215$ (2)	0.017 (3)	2.7 (9)
H(5)	$0 \cdot 105$ (3)	0.010 (2)	$0 \cdot 105$ (3)	$3 \cdot 2$ (9)
H(61)	0.039 (3)	0.224 (2)	0.264 (3)	$3 \cdot 1$ (9)
H(62)	-0.048 (3)	0.197 (3)	$0 \cdot 198$ (3)	$4 \cdot 9$ (12)
$\mathrm{H}(1 \mathrm{~A})$	0.338 (3)	0.071 (2)	-0.014 (3)	$3 \cdot 9$ (8)
$\mathrm{H}(18)$	0.221 (3)	0.028 (3)	-0.046 (3)	$3 \cdot 6$ (9)
$\mathrm{H}(2 A)$	0.297 (2)	0.066 (2)	$0 \cdot 159$ (3)	$3 \cdot 1$ (8)
H(2B)	0.268 (2)	-0.040 (2)	$0 \cdot 109$ (2)	3.0 (8)
$\mathrm{H}(3 A)$	$0 \cdot 177$ (2)	0.070 (2)	0.291 (2)	2.8 (7)
$\mathrm{H}(3 \mathrm{~B})$	0.117 (2)	-0.036 (2)	0.270 (2)	2.8 (8)
$\mathrm{H}(4 \mathrm{~A})$	-0.042 (2)	0.044 (2)	0.226 (3)	$2 \cdot 6$ (8)
$\mathrm{H}(4 B)$	-0.012 (3)	0.083 (2)	0.337 (3)	3.4 (8)

[^1]Discussion. The labeling of non-hydrogen atoms is shown in Fig. 1; a stereoscopic view of the molecule appears as Fig. 2. Bond distances and angles are collected in Table 2.

The completed analysis shows the complex reported by Crayton \& Mattern (1960) to be the meridional (mer), rather than the facial (fac), isomer.

The $\mathrm{Co}^{\text {III }}$ ion is in a slightly distorted octahedral environment with a dien ligand occupying a meridional belt of coordination sites. The dien ligand has a $\lambda \delta$ conformation (Purcell \& Kotz, 1977) and is coordinated to the $\mathrm{Co}^{\text {III }}$ ion via three equivalent linkages,

Table 2. Bond distances (\AA) and selected angles $\left({ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{N}(1) \quad 1.9$	1.997 (3)	$\mathrm{Co}-\mathrm{N}(4) \quad 1.94$	1.948 (3)
$\mathrm{Co}-\mathrm{N}(2) \quad 1.93$	1.935 (3)	$\mathrm{Co}-\mathrm{N}(5) \quad 1.95$	1.950 (3)
$\mathrm{Co}-\mathrm{N}(3) \quad 1.9$	1.916 (3)	$\mathrm{Co}-\mathrm{N}(6) \quad 1.94$	1.946 (4)
$\mathrm{N}(1)-\mathrm{O}(1 A) \quad 1.1$	$1 \cdot 179$ (4)	$\mathrm{N}(2)-\mathrm{O}(2 B) \quad 1.22$	1.225 (4)
$\mathrm{N}(1)-\mathrm{O}(1 B) \quad 1.1$	1.195 (5)	$\mathrm{N}(3)-\mathrm{O}(3 A) \quad 1.20$	1.209 (5)
$\mathrm{N}(2)-\mathrm{O}(2 A) \quad 1.2$	1.211 (4)	$\mathrm{N}(3)-\mathrm{O}(3 \mathrm{~B}) \quad 1.200$	$1 \cdot 200$ (5)
$\mathrm{N}(4)-\mathrm{C}(1) \quad 1.4$	$\begin{aligned} & 1.489(5) \\ & 1.514(6) \\ & 1.480(5) \end{aligned}$	$\mathrm{N}(5)-\mathrm{C}(3) \quad 1.47$	$\begin{aligned} & 1.478(5) \\ & 1.506(6) \\ & 1.494(6) \end{aligned}$
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.5$		$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.50$	
$\mathrm{C}(2)-\mathrm{N}(5) \quad 1.4$		$\mathrm{C}(4)-\mathrm{N}(6) \quad 1.49$	
$\begin{aligned} & \mathrm{N}-\mathrm{H} \\ & \mathrm{C}-\mathrm{H} \end{aligned}$	$0.82(4)-0.89(4) ;$ average $=0.85(3)$		
	0.89 (3)-1.04 (3); average $=0.97(5)$		
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(2)$	175.74 (13)	$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(6)$	$90 \cdot 89$ (14)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(3)$	89.17 (13)	$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(4)$	94.36 (14)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(4)$	88.36 (13)	$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(5)$	176.90 (13)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(5)$	93.90 (12)	$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(6)$	95.27 (15)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(6)$	88.87 (14)	$\mathrm{N}(4)-\mathrm{Co}-\mathrm{N}(5)$	85.35 (13)
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(3)$	86.61 (13)	$\mathrm{N}(4)-\mathrm{Co}-\mathrm{N}(6)$	169.94 (15)
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(4)$	92.58 (13)	$\mathrm{N}(5)-\mathrm{Co}-\mathrm{N}(6)$	85.18 (14)
$\mathrm{N}(2)-\mathrm{Co}-\mathrm{N}(5)$	$90 \cdot 32$ (12)		
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{O}(1 A)$) $121.8(3)$	$\mathrm{O}(2 A)-\mathrm{N}(2)-\mathrm{O}(2 B)$	118.8 (3)
$\mathrm{Co}-\mathrm{N}(1)-\mathrm{O}(1 B)$) 117.5 (3)	$\mathrm{Co}-\mathrm{N}(3)-\mathrm{O}(3 A)$	119.9 (3)
$\mathrm{O}(1 A)-\mathrm{N}(1)-\mathrm{O}(1 B$	(B) 120.2 (4)	$\mathrm{Co}-\mathrm{N}(3)-\mathrm{O}(3 B)$	120.8 (3)
$\mathrm{Co}-\mathrm{N}(2)-\mathrm{O}(2 A)$) 120.9 (2)	$\mathrm{O}(3 A)-\mathrm{N}(3)-\mathrm{O}(3 B)$	119.3 (4)
$\mathrm{Co}-\mathrm{N}(2)-\mathrm{O}(2 B)$) $120.3(2)$		
$\mathrm{Co}-\mathrm{N}(4)-\mathrm{C}(1)$	$111 \cdot 1$ (2)	$\mathrm{Co}-\mathrm{N}(5)-\mathrm{C}(3)$	108.9 (2)
$\mathrm{N}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	108.3 (3)	$\mathrm{N}(5)-\mathrm{C}(3)-\mathrm{C}(4)$	$105 \cdot 3$ (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(5)$	$106 \cdot 1$ (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(6)$	107.9 (3)
$\mathrm{C}(2)-\mathrm{N}(5)-\mathrm{Co}$	109.1 (2)	$\mathrm{C}(4)-\mathrm{N}(6)-\mathrm{Co}$	$110 \cdot 6$ (3)

Fig. 1. Labeling of non-hydrogen atoms in $\mathrm{Co}($ dien $)\left(\mathrm{NO}_{2}\right)_{3}$.

Fig. 2. Stereoscopic view of the $\mid \mathrm{Co}($ dien $)\left(\mathrm{NO}_{2}\right)_{3} \mid$ molecule, including H atoms.

Table 3. Deviations (in \AA) of atoms from planes

Plane	Atom, with deviation
$\mathrm{N}(4)-\mathrm{Co}-\mathrm{N}(5)$	$\mathrm{C}(1), 0.073(4) ; \mathrm{C}(2),-0.559(4)$
$\mathrm{N}(5)-\mathrm{Co}-\mathrm{N}(6)$	$\mathrm{C}(3),-0.564(4) ; \mathrm{C}(4), 0 \cdot 102(4)$
$\mathrm{O}(1 A)-\mathrm{N}(1)-\mathrm{O}(1 B)$	$\mathrm{Co}, 0.2504(4)$
$\mathrm{O}(2 A)-\mathrm{N}(2)-\mathrm{O}(2 B)$	$\mathrm{Co},-0.0305(4)$
$\mathrm{O}(3 A)-\mathrm{N}(3)-\mathrm{O}(3 B)$	$\mathrm{Co},-0.0206(4)$

with $\mathrm{Co}-\mathrm{N}(\mathrm{av})=$.1.948 (2) \AA. The $\mathrm{Co}-\mathrm{NO}_{2}$ linkages range from 1.916 (3) to 1.997 (3) \AA, while $\mathrm{N}-\mathrm{O}$ distances vary from $1 \cdot 179(4)$ to $1 \cdot 225(4) \AA$. The most weakly bound NO_{2} group [that centered on $\mathrm{N}(1)$] is not coplanar with the Co^{111} ion (see Table 3). This anomalous nitro group is tipped away from the dien system and participates in two intramolecular hydrogen bonds viz. $\mathrm{O}(1 B) \cdots \mathrm{N}(6)=2.725(5) \AA$ and $\angle \mathrm{O}(1 B) \cdots \mathrm{H}(61)-\mathrm{N}(6)=131(3)^{\circ} ; \mathrm{O}(1 A) \cdots \mathrm{N}(4)=$ $2.734(5) \AA$ and $\angle \mathrm{O}(1 A) \cdots \mathrm{H}(42)-\mathrm{N}(4)=125(3)^{\circ}$. These are the two shortest hydrogen bonds (either intra- or intermolecular) in the system.

Bond distances and angles agree generally with those reported for mer- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$ (Laing, Baines \& Sommerville, 1971) and fac-[Co(dien) $\left.\left(\mathrm{NO}_{2}\right)_{3}\right]$ (Kushi, Watanabe \& Kuroya, 1967), but are of greater precision.

This work was supported by the National Science Foundation (Grant CHE79-24560 to MRC).

References

Churchill, M. R., Lashewycz, R. A. \& Rotella, F. J. (1977). Inorg. Chem. 16, 265-271.

Crayton, P. H. \& Mattern, J. A. (1960). J. Inorg. Nucl. Chem. 13, 248-253.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-101, 149-150. Birmingham: Kynoch Press.
Kushi, Y., Watanabe, K. \& Kuroya. H. (1967). Bull. Chem. Soc. Jpn, 40, 2985.
Laing, M., Baines, S. \& Sommerville, P. (1971). Inorg. Chem. 10, 1057-1061.
Purcell, K. F. \& Kotz, J. C. (1977). Inorganic Chemistry, pp. 636-653. Philadelphia: W. B. Saunders.

[^0]: * Lists of structure factor amplitudes and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35792 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^1]: * Equivalent isotropic thermal parameters are given for nonhydrogen atoms. These are calculated as $B_{\mathrm{eq}}=\frac{1}{3}\left(B_{11}+B_{22}+B_{33}\right)$.

